Best Practices for Data Center Infrastructure Design

Cabling Distances and Space Planning

When designing and laying out a data center, understanding best practices as well as the pros and cons for each type of data center is critical. The TIA 942 data center guidelines are very specific that horizontal and vertical cabling should be run accommodating growth, so that these areas do not have to be revisited. It is also specific about equipment not being directly connected unless it is specifically required by the manufacturer. This is inline with other standards documents such as ANSI/TIA/EIA 568-B that design for opens systems architecture. So the question is raised: what is the best way to do this for a 10Gb/s environment?
There are considerations outside of the cable plant and number of connectors alone: usability, scalability, costs and the ability to perform Moves, Adds and Changes (MAC’s). Additionally, some limitations exist based on the category of the cabling system. Copper and fiber distances may vary with the type of cabling system selected. We will discuss some of those parameters and their potential impact on data center designs.

All copper channels are based on a worst case, 100 meter, 4 connector model. ISO/IEC 24764 (draft), TIA-942, ISO/IEC 11801 Ed2.0 and recommendations from electronics manufacturers suggest that the fixed horizontal portion of the channel be a minimum of 15m (50 ft.). While some shorter lengths may be supported in other portions of the channels, there is a requirement in zone distribution and consolidation points for this minimum distance. When moving to 10Gb/s electronics, the 15m minimum will likely exist for all horizontal cables due to recommendations from electronics manufacturers and the fact that all models within IEEE are based on a minimum 15m distance.

The 15m length is also dictated by signal strength issues, as your signal is strongest in those first 15m which can create issues with two connectors in close proximity. By providing at least 15m to the first connection point in the channel, you are allowing the attenuation to reduce the signal strength at the receiver or between components. In order to achieve the 15m distance, two options exist: either provide space in the pathway to take up the distance or create service loops under the floor. Service loops should not be a loop, but rather a loosely configured figure 8 for UTP systems, however this configuration is not a requirement for F/FUTP or F/STP systems. Bear in mind that the additional cable will consume more pathway space.

Copper distances for category 6A twisted pair cabling are limited to 100m for all channels with the exception of 10GBASE-T running on category 6/class E cabling. The distance for these channels will be limited to less than 37m depending upon the scope of potential mitigation practices to control alien crosstalk. It should be noted that the purpose of TSB 155 is to provide parameters for the qualification of existing Cat 6/Class E applications for use of 10GbaseT, TSB 155 should not be used for designing new installations.

Fiber channel lengths vary based on the grade and type of fiber and type of interface. Understanding these limitations will assist in the design and layout of the data center space. If you are utilizing 10GBASE-CX4 or Infiniband, you are distance limited to a maximum of 15m. The following chart summarizes the distances for all 10G applications and their associated cabling systems.
INFRASTRUCTURE DESIGN

<table>
<thead>
<tr>
<th>Application</th>
<th>Media</th>
<th>Classification</th>
<th>Max. Distance</th>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GBASE-T</td>
<td>Twisted Pair Copper</td>
<td>Category 6/Class E UTP</td>
<td>up to 55m*</td>
<td></td>
</tr>
<tr>
<td>10GBASE-T</td>
<td>Twisted Pair Copper</td>
<td>Category 6A/Class EA UTP</td>
<td>100m</td>
<td></td>
</tr>
<tr>
<td>10GBASE-T</td>
<td>Twisted Pair Copper</td>
<td>Category 6A/Class EA F/UTP</td>
<td>100m</td>
<td></td>
</tr>
<tr>
<td>10GBASE-T</td>
<td>Twisted Pair Copper</td>
<td>Class F/Class FA</td>
<td>100m</td>
<td></td>
</tr>
<tr>
<td>10GBASE-CX4</td>
<td>Manufactured</td>
<td>N/A</td>
<td>10-15m</td>
<td></td>
</tr>
<tr>
<td>10GBASE-SX</td>
<td>62.5 MMF</td>
<td>160/500</td>
<td>28m</td>
<td>850nm</td>
</tr>
<tr>
<td>10GBASE-SX</td>
<td>62.5 MMF</td>
<td>200/500</td>
<td>28m</td>
<td>850nm</td>
</tr>
<tr>
<td>10GBASE-SX</td>
<td>50 MMF</td>
<td>500/500</td>
<td>86m</td>
<td>850nm</td>
</tr>
<tr>
<td>10GBASE-SX</td>
<td>50 MMF</td>
<td>2000/500</td>
<td>300m</td>
<td>850nm</td>
</tr>
<tr>
<td>10GBASE-LX</td>
<td>SMF</td>
<td></td>
<td>10km</td>
<td>1310nm</td>
</tr>
<tr>
<td>10GBASE-EX</td>
<td>SMF</td>
<td></td>
<td>40km</td>
<td>1550nm</td>
</tr>
<tr>
<td>10GBASE-LRM</td>
<td>All MMF</td>
<td></td>
<td>220m</td>
<td>1300nm</td>
</tr>
<tr>
<td>10GBASE-LX4</td>
<td>All MMF</td>
<td></td>
<td>300m</td>
<td>1310nm</td>
</tr>
<tr>
<td>10GBASE-LX4</td>
<td>SMF</td>
<td></td>
<td>10km</td>
<td>1310nm</td>
</tr>
</tbody>
</table>

* As defined in 802.3an

THE LAYOUT...WHERE AND HOW TO CONNECT

When designing a cabling infrastructure, too often cost is the deciding characteristic of the channel selected. However, once all elements are considered, a design with higher initial cost may have a lower overall cost of ownership to a company that has a lot of MAC activity. The most important concern is that designers are familiar with all aspects of the different configurations available to make the best selection possible. A listing of cost, flexibility and performance is listed below.

<table>
<thead>
<tr>
<th>Model</th>
<th>Cost</th>
<th>Flexibility</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Connector</td>
<td>Lowest</td>
<td>Lowest</td>
<td>Highest</td>
</tr>
<tr>
<td>3-Connector with CP</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>3-Connector with CC</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>4-Connector</td>
<td>Highest</td>
<td>Highest</td>
<td>Lowest</td>
</tr>
</tbody>
</table>
SPACE PLANNING OPTIONS

The MDA (Main Distribution Area) is considered the core of the data center, connectivity will be needed to support the HDA (Horizontal Distribution Area). Following TIA-942 recommendations and utilizing EDA’s (Equipment Distribution Areas) and ZDA’s (Zone Distribution Areas) we would like to present four design options for consideration.

OPTION ONE

Option One is to run all fibers and copper from the core horizontal distribution areas and equipment distribution areas to a central patching area. This provides one central area for patching all channels.

There are several benefits to this design. First, all cabinets can remain locked. As patching is done in a central area — there is no need to enter a cabinet at any time unless there is an actual hardware change. For industries that are governed by compliance and security related issues, this may provide a greater benefit by reducing physical access to connections. Intelligent patching can be added to the patching field to increase security by automatically monitoring and tracking moves, adds and changes in that environment.

Another advantage is that all ports purchased for active gear can be utilized. With the ability to use VLANs, networks can be segmented as needed.

In other scenarios, entire switch blades are likely dedicated to a cabinet of servers. However, if there are insufficient server NICs to utilize all ports, then the idle ports become costly inefficient. For instance, if a 48 port blade was dedicated to a cabinet at location XY12, but there was only 6 servers with two connections each, then 36 ports were paid for and maintenance is being paid on those ports to remain idle. By utilizing a central patching field, the additional 36 ports can be used as needed elsewhere in the network thereby lowering equipment and maintenance costs which are far more expensive than the cable channels.
OPTION TWO

Option Two is to place patch panels in server cabinets that correspond directly to their counterparts in the switch cabinets. In this scenario, switch blades/ports will be dedicated to server cabinets. This may be easier from a networking perspective, but may not provide the best usage of all ports in the active electronics. Extra ports can be used as spares or simply for future growth. However, if an enterprise is planning to implement blade technology where server density may decrease per cabinet, this may not be a cost effective option.

For the switch cabinets, the type of copper cabling chosen will be a significant factor due to the increased UTP cable diameters required to support 10GBASE-T. In reality, cabinets and cabling (both copper and fiber) are changed far less frequently than the active electronics. But with the new category 6A UTP cable’s maximum diameter of 9.1mm (0.354 in.), pathways within the cabinets may not provide enough room to route cable and still provide the structural stability necessary. It is always recommended that percent fill calculations be addressed with the cabinet manufacturer. Moving the patch panels to adjacent locations or implementing a lower switch density may be required. While moving switches into open racks with adjacent patch panels provides a solution, this is only recommended if proper access security processes exist and some form of intelligent patching or other monitoring system is used so that network administrators can be notified immediately of any attempt to access switch ports.

Note: Black lines are Fiber, Blue lines are Copper
OPTION THREE

Option Three consists of providing consolidation points for connections. These can be either connecting blocks or patch panels. This allows for a zoned cabling approach, but may lead to higher moves, adds and changes costs. It is also difficult to design within the parameters of a 4 connector channel when using Zone distribution.

The other disadvantage to the consolidation point model is that the changes take more time than swapping a patch cord if the pair count changes. Depending on the location of the consolidation point, there may be additional risks from loss of static pressure under the floor when removing floor tiles ending up with more than 4 connectors in a channel, or harming existing channels during changes.

Consolidation Points (must be 15m min. from horizontal patch panels). Can be patched from any CP to any server cabinet.
OPTION FOUR

A final option is to have all server cabinets and switch cabinets in a row, terminating to a single patching field for the row, rather than to a central location. Core connections from the MDA are brought into this patching field. This option can work well in ISP or other environments where cross department/customer functionality is not desirable or tolerated. This option provides a bit of best of both worlds in that there will be some spare ports, but also the floor tiles will not have to be lifted to perform MAC work. While this is very similar to the first option, the segmentation can make it easier for network administrators and physical plant technicians to coordinate efforts. Additionally this style of design provides for flexibility in the ever changing environment of shrinking and expanding storage/networking requirements over time.

CONCLUSION

Whichever cabling choice or space option is made, the key step is planning. Siemon has resources to assist in the layout and planning or just as a second pair of eyes for any project. For more information, and additional resources got to www.siemon.com.

ABOUT THE AUTHOR

Carrie Higbie has been involved in the computing and networking for 25+ years in executive and consultant roles. She is Siemon’s Global Network Applications Manager supporting end-users and active electronics manufacturers. She publishes columns and speaks at industry events globally. Carrie is an expert on TechTarget’s SearchNetworking, SearchVoIP, and SearchDataCenters and authors columns for these and SearchCIO and SearchMobile forums and is on the board of advisors. She is on the Board of Directors and former President of the BladeSystems Alliance. She participates in IEEE, the Ethernet Alliance and IDC Enterprise Expert Panels. She has one telecommunications patent and one pending.
The Americas

Siemon – North America
101 Siemon Company Drive
Watertown, CT 06795-0400 USA
Tel: (1) 866 474 1197
Customer Service Direct:
Tel: (1) 888 425 6169 (Canada)
Fax: (1) 860 945 4225
info@siemon.com

Siemon – Venezuela
Calle Veracruz, Torre Orinoco Piso 2, Oficina 2-C
Las Mercedes
Caracas, Venezuela
Tel: (58) 212 992 5884
Fax: (58) 212 993 9138
info_venezuela@siemon.com

Siemon – CASA
Central & South America
Calle 77 No 11-19,
Oficina 601 Edificio Torre 77
Bogota,
Colombia
Phone: +011-571-317-2121
Fax: +011-571-317-1163
info_andino@siemon.com

Siemon – Mexico
Blvd. Manuel Avila Camacho
No. 2900-502
Fracc. Las Pirules, Tlalnepantla
Edo de Mexico, C.P. 54040
Mexico
Tel: (52) 55 5370 6100
Fax: (52) 55 5370 6300
info_mexico@siemon.com

Europe, Middle East, and Africa

Siemon – UK
36-48 Windsor Street
Chertsey, Surrey
KT16 8AS
Tel: (44) (0) 1932 571771
Fax: (44) (0) 1932 575070
info_uk@siemon.com

Siemon – Germany
Mainzer Landstrasse 16
60325 Frankfurt
Germany
Tel: (49) (0) 69 97168 184
Fax: (49) (0) 69 97168 304
info_deutsch@siemon.com

Siemon – Italy
Via Senigallia 18/2
20161 Milan
Italy
Tel: (39) 02 64 672 209
Fax: (39) 02 64 672 400
info_italia@siemon.com

Asia Pacific

Siemon – Australia (Sydney)
Unit 3A, 10 Badarah Road
PO Box 6063
Frenchs Forest NSW 2086
Sydney, Australia
Tel: (02) 9977 7500
Fax: (02) 9977 7501
info_asiapacific@siemon.com

Siemon – Australia (Melbourne)
Siemon - Australia (Melbourne)
Level 6, Suite 616
1 Queens Road
Melbourne VIC 3004
Melbourne, Australia
Tel: 03 9866 5277
Fax: 03 9866 5299
info_asiapacific@siemon.com

Siemon – China (Shanghai)
Rm. 3407 - 3408,
Hong Kong Square S. No. 283, Huang Hui Road
Shanghai, 200021, P.R. China
Tel: (86) 21 6390 6778
Fax: (86) 21 6384 0167
info_china@siemon.com

Siemon – China (Beijing)
Suite 1108 SCITECH Tower
22 Jianguozenwei Avenue
Beijing 100004, P.R. China
Tel: (86) 10 6559 8860
Fax: (86) 10 6559 8867
info_china@siemon.com

Siemon – China (Guangzhou)
Rm. 1209-1210
Western China Business Tower
No. 19,4 Section, Renminan Road
Chengdu, Sichuan 610041, P.R. China
Tel: (86) 28 6680 1100
Fax: (86) 28 6680 1096

Siemon – Japan
Siemon – Japan
10F, Meguro G Bldg
1-4-16 Meguro,
Meguro-ku, Tokyo, 153-0063 Japan
Tel: 81 (3) 5437-1581
Fax: 81 (3) 5437-1581
info_japan@siemon.com

Siemon – China (Beijing)
Suite 1108 SCITECH Tower
22 Jianguozenwei Avenue
Beijing 100004, P.R. China
Tel: (86) 10 6559 8860
Fax: (86) 10 6559 8867
info_china@siemon.com